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Abstract

The present work investigates numerically the laminar natural convection heat and mass transfer in open vertical

rectangular ducts with uniform wall temperature/uniform wall concentration (UWT/UWC) or uniform heat ¯ux/
uniform mass ¯ux (UHF/UMF) boundary conditions. The vorticity±velocity formulation is applied to solve for the
coupled momentum, energy and concentration equations. Results of dimensionless induced volume rate Q, average
Nusselt number Nu and Sherwood number Sh are presented in terms of channel length L, buoyancy ratio N,

Grashof number Gr, Schmidt number Sc and aspect ratio g. Analytical solutions for Q, Nu and Sh for the UWT/
UWC case are derived under fully developed condition. In addition, the correlation equations of Q, Nu and Sh for
both boundary conditions are also presented. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Transport processes in which the combined buoy-

ancy forces of heat and mass transfer, resulting from

the simultaneous presence of di�erences in temperature

and variations in concentration, have signi®cant in¯u-

ences on momentum, heat and mass in ¯owing gas

mixtures are often encountered in many engineering

system and the natural environment. The engineering

applications include: the chemical reaction in reactor

chamber, chemical vapor deposition of solid layers,

cooling of electronic equipment, crystal growth.

Similar processes occurring in nature also include vari-

ous photosynthetic mechanisms, discharge into bodies

of water, calm-day evaporation and vaporization of

mist and fog and evaporation from and circulation in

terrestrial bodies of water. The study of natural con-

vection heat and mass concerned with external ¯ows

has been examined by numerous researchers.

Bottemanne [1] obtained the solution of the natural

convection heat and mass transfer along a vertical

plate for the speci®ed condition of Pr = 0.71 and

Sc = 0.63. Detailed literature survey about natural

convection heat and mass transfer along a vertical

plate or a horizontal plate was presented by Gebhart

and Pera [2,3]. They obtained a similarity solution for

vertical [2] and horizontal [3] plates for the case of

constant wall temperature and constant wall concen-

tration. Gallahan and Marner [4] studied the e�ect of

mass transfer on transient free convection ¯ow past a

semi-®nite vertical isothermal plate for Pr = 1 and

Sc = 0.2, 0.7 and 7. Soundalgeker and his colleagues

[5,6] investigated the transient free convection with

mass transfer along an in®nite or a semi-in®nite verti-

cal plate in air ¯ows with real gaseous species such as

H, He, H2O, NH3 and CO2 (Sc = 0.16, 0.3, 0.6, 0.68

and 1.0). Natural convection heat and mass transfer

along an inclined plate or a vertical cylinder was

reported by Chen and Yuh [7,8] for various ¯uid ¯ow.

These analyses were based on species di�usion pro-

cesses with very low concentration levels such that the
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Soret±Dufour (thermo di�usion and di�usion-thermo)

e�ects, as well as the interfacial velocity at the wall
due to species di�usion, were neglected. Srinivasan and

Angirasa [9] presented the complex interaction of natu-
ral convection heat and mass transfer between Schmidt

number, buoyancy ratio and strati®cation parameters
in unsteady double-di�usive free convection ¯ow along

a vertical surface. Lin and Wu [10,11] obtained
nonsimilarity results for most practical solutions

(Pr= 0.7, 0.21 R Sc R 2.1) and aqueous solutions
(Pr= 7, 0.21 R Sc R 2.1). They also proposed corre-

lation equations for estimating the rates of heat and
mass transfer along a vertical plate.

The heat and mass transfer in a channel ¯ow has

received considerable attention. Gill et al. [12] con-
sidered combined free and forced convection for fully

developed ¯ow between inclined parallel plates with
asymmetric mass transfer. A similarity solution was

obtained by Mollendof and Gebhart [13] to examine
the double di�usive free convection in the asymmetric

case. The similarity solutions have a serious limitation
since they can be obtained for a speci®c boundary con-

dition only. Lee et al. [14] presented the results of
natural convection heat and mass transfer between ver-

tical parallel plates in which mass transfer from one
wall resulted in a downward ¯ow. Nelson and Wood

Nomenclature

a, b width and depth of the rectangular
duct, respectively [m]

A cross-sectional area of the vertical rec-

tangular duct [m2]
cp speci®c heat of ¯uid [J kgÿ1 Kÿ1]
C, c dimensionless and dimensional species

mass fraction, C=(cÿc0)/(cwÿc0) for
UWT/UWC or (cÿc0)/(mwDe/D ) for
UHF/UMF

C1, C2 constants in correlation equations
D mass di�usivity [m2 sÿ1]
De equivalent hydraulic diameter, 4A/S [m]
g gravitational acceleration [m sÿ2]
Gr Grashof number, gbDTD 4

e/ln 2

hm average convective heat transfer coe�-
cient

I, J number of ®nite di�erence divisions in
the X- and Y-directions, respectively

k thermal conductivity [W mÿ1 Kÿ1]
L, l dimensionless and dimensional length

of the vertical duct, L = 1/Gr
Le Lewis number, Sc/Pr

n dimensionless direction coordinate nor-
mal to the duct walls

N buoyancy ratio, b �(cwÿc0)/b(TwÿT0)
for UWT/UWC or (b �mw/D )/(bqw/k )
for UHF/UMF

Nu average Nusselt number
Nuz local Nusselt number

P, p dimensionless and dimensional cross-
sectional mean pressure, P=p/(rw 2

0)
Pr Prandtl number, n/a
qw wall heat ¯ux [W mÿ2]
Q dimensionless volume ¯ow rate
_Q , _q dimensionless and dimensional heat

transfer rate

S circumference of cross-section [m]
Sc Schmidt number, n/D
Sh average Sherwood number

Shz local Sherwood number
T temperature [K]
u, v, w velocity components in x-, y- and z-

directions, respectively [m sÿ1]
U, V, W dimensionless velocity components in

x-, y- and z-directions, respectively,

U=uDe/n, V=vDe/v, W=wD 2
e/ln Gr

w0 mean velocity at the entrance [m sÿ1]
x, y, z coordinate system [m]
X, Y, Z dimensionless coordinate system, X=x/

De, Y=y/De, Z=z/(l Gr )
Z � scale parameter of fully-developed ¯ow,

1+N/Le.

Greek symbols
a thermal conductivity [m2 sÿ1]
b coe�cient of thermal expansion
b � coe�cient of concentration expansion

g aspect ratio, a/b
DT characteristics temperature di�erence,

(TwÿT0) for UWT/UWC or qwDe/k for

UHF/UMF
y dimensionless temperature, (TÿT0)/DT
n kinematic viscosity [m2 sÿ1]
x dimensionless vorticity in the z-direc-

tion
r ¯uid density [kg mÿ3].

Subscripts

w value at wall
0 condition at inlet.
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[15,16] investigated numerically the combined heat and

mass transfer for natural convection between vertical

parallel plates. Their results cover a wide range of

Rayleigh numbers from fully developed ¯ow up to

back¯ow of the exit for both aiding and opposing

buoyancy cases due to mass transfer. Analytical sol-

ution for fully developed ¯ow for the same problem

was presented by Nelson and Wood [17].

As seen, few studies on the natural convection heat

and mass transfer in vertical rectangular ducts exist

in the open literature. This motivated the present

study. Combined numerical and theoretical analyses

were performed to investigate the natural convection

heat and mass transfer in vertical rectangular ducts.

A schematic of the ¯ow con®guration and coordinate

system is illustrated in Fig. 1. The rectangular duct is

opened to ambient at the top and bottom. The duct

is of ®nite length l and having a width a (in the x-

direction) and depth b (in the y-direction). In this

work, a uniform wall temperature/uniform wall con-

centration (UWT/UWC) or a uniform heat ¯ux/uni-

form mass ¯ux (UHF/UMF) condition is imposed at

one wall ( y = 0), while the other walls are assumed

to be adiabatic. At the duct inlet (z = 0), the buoy-

ancy-induced ¯ow is assumed to have uniform axial

velocity w0, uniform temperature T0 and uniform con-
centration c0.

2. Analysis

To simplify the analysis, the following assumptions

are made: (1) the ¯ow is assumed to be laminar,
steady, boundary-layer type and of constant proper-
ties except the density variation of the buoyancy term

in the z-momentum equation; (2) the Boussinesq ap-
proximation is used to characterize the buoyancy
e�ects; (3) the viscous dissipation e�ect is negligible;

and (4) the surface normal velocity is ignored due to
the small temperature and concentration di�erence
[7,8].

Based on the above assumptions, the dimensionless
governing equations of the vorticity±velocity formu-
lation can be expressed as [18]
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Fig. 1. Schematic diagram of the physical model.
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where x=@U/@Yÿ@V/@X is the dimensionless axial vor-

ticity.
The governing equations are subjected to the follow-

ing boundary conditions:

U � V � 0, W � 1, y � C � 0 �at the inlet Z � 0�

U � V �W � 0, @y=@n � @C=@n � 0

�at the wall X � ÿ�1� g�=4�

U � V �W � 0, @y=@n � @C=@n � 0

�at the wall X � �1� g�=4�

U � V �W � 0, y � C � 1 �at the wall Y � 0�

for UWT=UWC

U � V �W � 0, @y=@n � @C=@n � ÿ1

�at the wall Y � 0� for UHF=UMF

U � V �W � 0, @y=@n � @C=@n � 0

�at the wall Y � �1� g�=2g�
�7�

In this work, the variables of interest are the induced

volume ¯ow rate, the average Nusselt and Sherwood
numbers. The dimensionless induced volume ¯ow rate
is de®ned as

Q �
��1�g�=2g
0

��1�g�=4g
ÿ�1�g�=4g

W dX dY �8�

The average Nusselt number is the mean value of the
local Nusselt number on the heated wall, i.e.

Nu � 1

L

�L
0

Nuz dZ �9a�

where

Nuz � 2

1� g

��1�g�=4
ÿ�1�g�=4

ÿ @y
@Y

����
Y�0

dX

�UWT=UWC�
�9b�

Nuz � 2

1� g

��1�g�=4
ÿ�1�g�=4

ÿ 1

y

����
Y�0

dX �UHF=UMF� �9c�

Similarly, the average Sherwood number is de®ned as

Sh � 1

L

�L
0

Shz dZ �10a�

where

Shz � 2

1� g

��1�g�=4
ÿ�1�g�=4

ÿ @C
@Y

����
Y�0

dX

�UWT=UWC�
�10b�

Shz � 2

1� g

��1�g�=4
ÿ�1�g�=4

ÿ 1

C

����
Y�0

dX �UHF=UMF� �10c�

3. Analytical solution

Before beginning the general numerical solution, the
analytical solutions for low Grashof number limit, i.e.
fully developed ¯ow, in the case of UWT/UWC, are

®rst obtained. These solutions, although only approxi-
mate, provide useful data against which the computed
results can be checked. Under the assumption of fully-

developed ¯ow, di�erentiating Eq. (4) twice with
respect to X and Y and combining Eqs. (5) and (6)
leads to

@ 4W

@X 4
� 2

@ 4W

@X 2@Y 2
� @

4W

@Y 4
� Pr W

@y
@Z

�N Sc W
@@C

@Z
� 0

�11�

In the case of uniform wall temperature/uniform wall
concentration (UWT/UWC), the terms of @y/@Z and
@y/@Z are zero. Hence, Eq. (11) can be reduced to be
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The solution of Eq. (12) has the form

W �W1�Y � �W2�X, Y � �13�

where

W1 � 1�N

2

�
1� g
2g

Yÿ Y 2

�
�14�

In Eq. (14), the W1 represents the velocity distribution

on the symmetric axis X= 0, which is identical to the
result of parallel plate ¯ow [17]. Now, we can express
the W1 in a trigonometric series:

W1 � �1� g�2�1�N �
2g2p3

X1
m�1

1

m3

�
2 sin

�
mp
2

�

ÿmp cos

�
mp
2

��
sin

�
mp
2

�
sin

�
2gmpY
1� g

� �15�

On the other hand, let W2(X, Y ) be the following

series form:

W2 �
X1
m�1

Xm sin

�
2gmpY
1� g

�
�16�

where Xm is a function of X only. Introducing W2 into
Eq. (12) yields a fourth-order O.D.E.:

X IV
m ÿ 2m2p2Xm �m4p4Xm � 0 �17�

Since the velocity pro®le in the cross section of a duct

is symmetric with respect to the Y axis, the general sol-
ution of Xm can be expressed as

Xm � Am cosh

�
2gmpX
1� g

�

� 2gmpX
1� g

Bm sinh

�
2gmpX
1� g

� �18�

Combination of Eqs. (16) and (18) yields the solution
of W2. Finally, the solution for the velocity pro®le in

the cross section of the rectangular duct can then be
found by the summation of W1 and W2, i.e.

W �
X1
m�1

(
�1� g�2�1�N �

2g2m3p3

�
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�
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�
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��
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�
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�
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�

�mp
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�
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1� g

�)
sinh

�
2gmpY
1� g

�
�19�

Substituting boundary conditions of W = 0 on the
side walls X=2g/2 into the above equation, we can

®nd the velocity pro®le

W � �1� g�2�1�N �
g3p3

X1
m�1, 3, 5, ...

1

m3

"
ÿ cosh

�
gmp
2

�

� cosh

�
2gmpX
1� g

�#
sech

�
gmp
2

�
sin

�
2gmpY
1� g

� �20�

According to the de®nition of Eq. (8), the dimension-
less induced volume rate under fully-developed limit
can be derived by inserting the known velocity pro®le,
Eq. (20), into the integral of Eq. (8). This leads to

Q �
��1�g�=2g
0

��1�g�=4
ÿ�1�g�=4

W dX dY

� ÿ�1� g�4�1�N �
2g4p5
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m�1, 3, 5...

1

m5
sech

�
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2

�

�
�
2 sinh

�
gmp
2

�
ÿ gmp cosh

�
gmp
2

��
�21�

It is worth noting in Eq. (21) that the dimensionless
induced volume rate Q is independent of the par-

ameters of Pr and Sc for fully-developed ¯ow. The
heat absorbed by the ¯uid rising in the rectangular
duct is given by

_q � rcp

�b
0

�a=2
ÿa=2

w�Tÿ T0� dx dy �22�

The above equation can be rewritten in a dimension-
less form as

_Q � _q

rcpnl Gr�Tw ÿ T0� �
��1�g�=2g
0

��1�g�=4
ÿ�1�g�=4

Wy dX dY

�23�

An average surface conductance over the heated wall

can be de®ned by

hm � _q

al�Tw ÿ T0� �24�

The average Nusselt number is de®ned by

Nu � hmDe

k
�25�

Therefore, from Eqs. (23)±(25), we can ®nd the aver-
age Nusselt number under the fully-developed ¯ow
condition:

K. Lee / Int. J. Heat Mass Transfer 42 (1999) 4523±4534 4527



Nu � 2

1� g
Pr Gr

��1�g�=2g
0

��1�g�=4
ÿ�1�g�=4

Wy dX dY

� 2

1� g
Pr Gr Q �26�

Similarly, the average Sherwood number can be
obtained as

Sh � 2

1� g
Sc Gr

��1�g�=2g
0

��1�g�=4
ÿ�1�g�=4

WC dX dY

� 2

1� g
Sc Gr Q �27�

4. Solution method

The present problem is numerically solved by the
vorticity±velocity method for three-dimensional para-

bolic ¯ow [18,19] in which the equations for unknown
U, V, W, x, y, and C are coupled. For a given con-
dition, the ®eld solutions are calculated by a marching
technique based on the Du Fort Frankel scheme [20].

Details of the solution procedure have been described
elsewhere [21,22] and are not repeated herein.
To insure the independence of the numerical results,

a numerical experiment was made on the grid line
I � J and axial step size DZ. Grids were chosen to be
uniform in the cross-sectional direction but nonuni-

form in the axial ¯ow direction to account for the
uneven variations of W, y and C near the inlet and
exit. In the ¯ow direction, grids are of highest density

near the entrance and exit of the channel. In the pre-
sent study, 41 � 41 nodes in the cross-section plane
were used, while the number of nodes in the z-direc-
tion ranges from 1175 to 5475 (DZ= 1 � 10ÿ3±
5 � 10ÿ2L ), depending on the Grashof number (i.e.
channel length). To check the grid independence, a nu-
merical experiment for the typical case (N = 1,

Pr = 0.7, Sc= 0.6, Gr = 10 and g=1) with the
boundary condition of UWT/UWC was made to deter-
mine the grid spacing and axial step size required for

acceptable numerical accuracy. It is found in the separ-
ate numerical runs that the deviations in Nu and Sh
calculated using either I � J= 41 � 41 or 61 � 61 are
always within 2%. Furthermore, the deviations in local

Nu and Sh calculated using either I � J (DZ )=41 � 41
(1 � 10ÿ3±5 � 10ÿ2L ) or 41 � 41 (5 � 10ÿ4±
3 � 10ÿ2L ) are less than 1%. Accordingly, the compu-

tation involving an I � J (DZ )=41 � 41 (1 � 10ÿ3±
5 � 10ÿ2L ) grid is considered to be su�ciently accu-
rate to describe the natural convection heat and mass

transfer in vertical ducts. As a partial veri®cation of
the computational procedure, results were initially
obtained for pure natural convection heat transfer in

vertical rectangular ducts (N= 0). The results of aver-
age Nusselt number were compared with those by

Ramakrishna et al. [18] for a square duct and
Moutsoglou and Park [23] for a rectangular duct. The
Nusselt number was found to agree with those of Refs.

[18,23] within 1%. To further validate the adequacy of
the numerical solutions, the predictions of extremely
large aspect ratio g=40 are compared to those

obtained by Nelson and Wood [15]. It was found that
the present predictions are in good agreement with
those of Ref. [15]. The above numerical tests indicate

that the solution procedure adopted is suitable for the
present study.

5. Results and discussion

Inspection of the preceding analysis reveals that the
characteristics of the natural convection heat and mass
transfer in vertical rectangular ducts depend on ®ve

dimensionless groups: namely, the buoyancy ratio N,
the Schmidt number Sc, the Grashof number Gr, the
aspect ratio g and the Prandtl number Pr. In the
present analysis, to concentrate on the understanding

Fig. 2. E�ects of buoyancy ratio N and Schmidt number Sc

on the dimensionless induced volume rate for the case of

UHF/UMF with g=1.
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of heat and mass transfer characteristics, all the nu-

merical runs were performed for Pr = 0.7. Schmidt
number Sc is chosen to have the value of 0.2 (hydro-

gen), 0.6 (water vapor) and 1.3 (ethyl alcohol) for the
buoyancy ratio N ranging from 0 to 2. The calcu-
lations of the governing equations yield the velocity,

temperature and concentration pro®les and the distri-
bution of motion pressure along the ¯ow direction.

The results of practical interest are the induced volume
¯ow rate, the average Nusselt and Sherwood numbers.

The e�ects of the buoyancy ratio N and the Schmidt
number Sc on the dimensionless induced volume rate

Q, the average Nusselt number Nu and the average
Sherwood number Sh are shown, respectively, in Figs.
2, 4 and 6 for the uniform heat ¯ux/uniform mass ¯ux

(UHF/UMF) case. Similar plots for the uniform wall
temperature/uniform wall concentration (UWT/UWC)

case are shown, respectively, in Figs. 3, 5 and 7. In
these ®gures, N = 0 corresponds to the situation in

which the natural convection arises from thermal
buoyancy force only and there is no contribution from

the species di�usion. The Q, Nu and Sh are therefore
independent of the Schmidt number, as expected.
When the buoyancy force from the species di�usion

assists the thermal buoyancy force (N>0), it is
revealed that the Q, Nu and Sh increase with increas-

ing N. It is also well known that a smaller Schmidt
number corresponds to a larger binary di�usion

coe�cient, which in turn, exerts a larger in¯uence on
the ¯ow ®eld and hence the thermal ®eld.
In Figs. 2(a) and 3(a), an increase in Sc causes a

decrease in Q for a ®xed value of N. This is due to the
fact that as the Sc increases, the thickness of the con-
centration boundary layer decreases. This causes the

¯ow driven by the concentration gradient to be con-
®ned closer to the wall. This leads to a lower axial vel-
ocity which in turn causes a lower volume ¯ow rate.

For the UWT/UWC case [see Fig. 3(a)], the Q
increases with the channel length L and ®nally
approaches an asymptotic value corresponding to the
limit of fully-developed ¯ow. Additionally, for a ®xed

Sc, the di�erence in Q between various N becomes sig-
ni®cant as L is increased. It is also noted in Fig. 3(a)
that the Q under fully-developed ¯ow is independent

of Sc for a ®xed value of N. The volume ¯ow rate of
fully developed ¯ow limit is 0.0351, 0.0702 and 0.1053
for N= 0, 1 and 2, respectively. Unlike the result of

the UWT/UWC case, no fully developed ¯ow limit is
reached for the UHF/UMF case [see Fig. 2(a)]. This is
because the driving force is sustained for the UHF/

UMF case. The trend of the curves for various combi-
nations of N and Sc is almost similar to each other. A
comparison of Q between UHF/UMF and UWT/
UWC cases shows that the UHF/UMF causes a higher

Q than that of UWT/UWC for fully developed ¯ow
(i.e. a larger channel length) and the discrepancy is
increased with increasing channel length. A careful

inspection reveals that the trend is reversed for the
case of a smaller channel length. Additionally, the dis-
crepancy of Q between various values N (for a ®xed

Sc ) and Sc (for a ®xed N ) is more signi®cant in the
UHF/UMF case. In Fig. 2(b), if the Q and L are
scaled by the factor Z � (=1+N/Le ), then the results
of Q/Z � against L/Z � nearly converge to a universal

curve, except for the system with a smaller channel
length. To facilitate the applications of the results, the
correlation equation of Q for the UHF/UMF case is

given here:

Q

Z �
� 0:29122Z0:545

�1� 1:9746Z0:018�1=1:8 �UHF=UMF� �28�

where Z=L/Z � and Z �=1+N/Le. In Fig. 3(b), for the
UWT/UWC case, if the Q and L are scaled by a factor

(1+N ), then the scaled values of Q/(1+N ) at large
(L/(1+N ) become 0.0351 and are independent of N
and Sc. This is in line with the analytical results in Eq.
(21). The correlation equation of Q/(1+N ) vs L/

(1+N ) can be given by

Q

1�N
� C1Z0:75

�1� C2Z0:9375�1=1:8
�UWT=UWC� �29�

Fig. 3. E�ects of buoyancy ratio N and Schmidt number Sc

on the dimensionless induced volume rate for the case of

UWT/UWC with g=1.
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where Z=L/(1+N ) and the constants C1 and C2 are

listed in Table 1.

It is clear in Figs. 4(a) and 5(a) that the smaller Nu

is experienced for a system with a higher Sc. This is

due to the fact that the increase in Sc causes a decrease

in ¯ow velocity and hence di�usion dominates over

convection. In Fig. 5(a), for the UWT/UWC case, the

Nu under fully-developed ¯ow limit (i.e. a small Gr

case) is independent of Sc for a ®xed value of N. But

the curves for various Sc branch o� each other at

higher Gr, and the value of Nu decreases with increas-

ing Sc. Similar to the results of induced volume ¯ow

Table 1

Constants of correlation equations for volume ¯ow rate Q, the average Nusselt number Nu and the Sherwood number Sh for the

UWT/UWC case

Sc = 0.2 Sc= 0.6 Sc= 1.3

C1 C2 C1 C2 C1 C2

Q N = 0 1.0161 66.531 1.0161 66.531 1.0161 66.531

N = 1 1.4631 105.86 1.0679 70.715 0.81496 50.337

N = 2 1.6307 120.66 1.1119 74.949 0.77142 47.211

Nu N = 0, 1, 2 0.025779 0.0050237 0.023626 0.0050237 0.021860 0.0050237

Sh N = 0 0.014727 0.0046032 0.017766 0.0046032 0.018456 0.0046032

N = 1 0.020674 0.0046032 0.020846 0.0046032 0.020845 0.0046032

N = 2 0.023584 0.0046032 0.022665 0.0046032 0.022361 0.0046032

Fig. 4. E�ects of buoyancy ratio N and Schmidt number Sc

on the average Nusselt number for the case of UHF/UMF

with g=1.

Fig. 5. E�ects of buoyancy ratio N and Schmidt number Sc

on the average Nusselt number for the case of UWT/UWC

with g=1.
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rate, the deviations of Nu caused by the mass di�usion

e�ects are more signi®cant for the case of UHF/UMF.
In Fig. 4(b), in terms of Z � Gr, the curves for various
values of N and Sc collapse to a single asymptotic
curve except for N � Gr>200. The Nu of the UHF/

UMF case can be correlated by the following
equation:

Nu � 0:37874Z0:62

�1� 0:39558Z0:756�1=1:8 �UHF=UMF� �30�

where Z=Z � Gr and Z �=1+N/Le. For the UWT/
UWC case in Fig. 5(b), a di�erent perspective of the
situation may be explored by plotting Nu vs (1+N )Gr.

In this case, the results of smaller (1+N )Gr collapse to
single asymptotic curve, Eq. (22), and are independent
of Sc and N. In addition, the curves of various Sc are

nearly indistinguishable at large (1+N )Gr. A corre-
lation between Nu and (1+N )Gr for various combi-
nations of Sc and N in the case of UWT/UWC can be

found as

Nu � C1Z0:982

�1� C2Z1:2996�1=1:8
�UWT=UWC� �31�

where Z=(1+N )Gr and the constants C1 and C2 are

listed in Table 1.

The e�ects of Sc and N on the Sh for the cases of

UHF/UMF and UWT/UWC are shown in Figs. 6 and
7, respectively. For a given value N, a larger Sh are as-

sociated with the system with a larger Sc. That is, the
mass transfer rate increases with increasing Sc. The

reason is due to the fact that a larger Sc corresponds

to a smaller binary di�usion coe�cient in a given
binary mixture. Hence, a thinner concentration bound-

ary-layer thickness relative to the ¯ow boundary-layer

thickness occurs for this situation and thereby results
in a larger concentration gradient at wall, which in

turn, enhances the mass transfer rate. When N is

decreased, the species concentration di�erence is small
compared with the temperature di�erence, the

Sherwood number is seen to increase rapidly. For a

higher Sc, doubling N from 1 to 2 has little impact on
the Sh due to the relatively low di�usivity of the mass

transfer. In terms of Z � Le 2 Gr, the Sh for di�erent

values of N and Sc nearly collapse to a single curve (as
shown in Fig. 6(b)), which can be expressed by the fol-

lowing correlation equation:

Fig. 6. E�ects of buoyancy ratio N and Schmidt number Sc

on the average Sherwood number for the case of UHF/UMF

with g=1.

Fig. 7. E�ects of buoyancy ratio N and Schmidt number Sc

on the average Sherwood number for the case of UWT/UWC

with g=1.
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Sh � 0:4573Z0:4

�1� 0:41345Z0:378�1=1:8 �UHF=UMF� �32�

where Z=Z � Le 2 Gr and Z �=1+N/Le. For the
UWT/UWC case, the Sh against (1+N )Gr Le
approaches a single curve at small (1+N )Gr Le. But

this is not the case for large (1+N )Gr Le. The corre-
lation equation for various combinations of N and Sc
in Fig. 7(b) may be written as

Sh � C1Z0:995

�1� C2Z1:3104�1=1:8
�UWT=UWC� �33�

where Z=(1+N )Gr Le and the constants C1 and C2

are listed in Table 1.
Now, attentions are focused on the axial distri-

butions of local Nusselt and Sherwood numbers. The

axial variations of Nuz and Shz with Gr and Sc as par-
ameters in the typical case (N= 1.0) for the cases of
UHF/UMF and UWT/UWC are shown in Figs. 8 and
9, respectively. In Fig. 8, the Nuz and Shz decrease

with axial location due to the entrance e�ect. Smaller
Nuz and Shz are found for the case of lower Gr.
Additionally, an increase in Sc causes a decrease in

Nuz and increase in Shz for a ®xed Gr due to the

Fig. 8. The axial distributions of the local Nusselt and

Sherwood numbers for the case of UHF/UMF with g=1.

Fig. 9. The axial distributions of the local Nusselt and

Sherwood numbers for the case of UWT/UWC with g=1.

Fig. 10. E�ects of aspect ratio g on the dimensionless induced

volume rate, average Nusselt and Sherwood numbers for the

case of UHF/UMF.
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reason stated previously. Careful inspection of Fig. 8
shows that the discrepancy of Nuz and Shz between

various Sc increases with decreasing Gr. For the
UWT/UWC case in Fig. 9, as the Gr decreases the
¯uid temperature and concentration attain the uniform

surface temperature and concentration on the heated
wall. Hence, the Nuz and Shz decrease sharply to zero,
especially for the system with a smaller Gr. Relative to

the UHF/UMF case, the di�erences of Nuz and Shz
between various Gr are more signi®cant for the UWT/
UWC case.

The e�ects of the duct aspect ratio g on the induced
volume ¯ow rate, the average Nusselt number and the
average Sherwood number are of interest. The vari-
ations of Q, Nu and Sh with aspect ratio g as par-

ameter for the UHF/UMF case are shown in Fig. 10.
In these subplots, the results of Gr = 10 and 100 with
various values of Sc are presented. An examination of

Fig. 10(a) reveals that the Q for various combinations
of Sc and Gr increases monotonically with increasing
g. The slope of each curve is nearly constant for g>7.

In Figs. 10(b) and (c), for the results of Gr = 100, the
curves of Nu and Sh reach maximum value at a certain
value of g, then the curves decrease with increasing g.
Finally, the Nu and Sh approach asymptotically to
attain their parallel plates ¯ow limit [15,16]. But in the
case of Gr = 10, the results of Nu and Sh decrease
with an increase in g with maximum values at g=1.

The e�ects of g on the Q, Nu and Sh for the UWT/
UWC case are shown in Fig. 11. Similar to the results
of the UHF/UMF case, the variations of Q for the

UWT/UWC case increase with g. The slope of each
curve is also nearly constant for g>7. It is also
observed that the e�ect of Sc on the variations of Nu

at di�erent g is nearly insigni®cant for Gr = 10.
Comparing Figs. 10 and 11 reveals that the e�ect of g
on the Q is more signi®cant for the UHF/UMF case
than the UWT/UWC case, especially for the case of

lower Gr. But the trend is reversed for the variations
of Nu and Sh. Additionally, the variations of Nu and
Sh for the UWT/UWC case would approach the

results of parallel plates limit as g>31.

6. Conclusions

The characteristics of natural convection heat and
mass transfer in vertical rectangular ducts have been
studied numerically. Analytical equations for dimen-

sionless induced volume rate, the average Nusselt num-
ber and Sherwood number are also derived for the
fully developed ¯ow. The following conclusions can be

drawn from the present analysis.

1. The Q, Nu and Sh were found to increase with
buoyancy ratio N.

2. An increase in Sc causes a decrease in Q and Nu,
and an increase in Sh under the same value of N.

3. The deviations of Q, Nu and Sh between various
values of N and Sc are more signi®cant for the
UHF/UMF case.

4. The e�ects of g on the Q are more pronounced for

the UHF/UMF case than the UWT/UWC case.
5. The characteristics of natural convection in vertical

rectangular ducts would approach those of two-

dimensional vertical parallel plate ducts as the
aspect ratio g>31.
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